o LAY TN T T w
. o P
Ce T J pL

”

WS rue yopy

Nej
")
O
H .
ﬁ Learning to Plan in LISP
< John R. Anderson
9: Robert Farrell \
Ron Sauers

Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Approved for public release; distribution unlimited. <
Reproduction in whole or in part is permitted for any purpose
of the United States government.

This research was supported by the Personnel and Training Research Programs, Psychological
Services' Division, Office of Naval Research, under Contract No.. N00014-81-C-0335, Contract
Authority Identification Number, NR No.: 157-465 to John Anderson.

ELECTE

NOV 221982
82 11 22 088)

"v

Best
Available
Copy

) i £ied) ,

SECURITY CLASSIFICATION OF THIS PA When Dﬂ;‘Enured); 4

READ INSTRUCTIONS .
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
ONR-82-2 AD.A1L 1 73,6
4. TITLE (and Subt“ll) S. TYPE OF REPORT & PERIOD - COVERED

Learning to Plan in LISP Interim report

6. PERFORMING OG. REPORT NUMBER

AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
John R. Anderson
Robert Farrell N00014-81-C-0335

Ron Sauers

. PERFORMING ORGANIZATION NAME AND ADDRESS

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Department of Psychology
Carnegie-Mellon University NR 157-465
Pittsburgh, PA 15213

11, CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE

Personnel and Training Research Programs November 1, 1982

Office of Naval Research 13, NUMBER OF PAGES

Arlington, VA 22217 46
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Ollice) 1S. SECURITY CLASS. (of thia report)

unclassified
i1Sa, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il dilferent from Report)

18.

SUPPLEMENTARY NOTES

. KEY WORDS (Continue on reverse gide if necessary and identify by block number)

production systems computer simulation knowledge compilation retrieval

programming analogy proceduralization planning
LISP working memory composition

problem-solving cognitive skill problem decomposition

goal structures skill acquisition recursion automatic programming

20.

ABSTRtCT (Continue on reverse aide If necessary and identify by block number)

Protocols have been gathered of the first 30 hours of the learning of
LISP, A simulation, GRAPES, has been developed that models the processes by
which subjects write LISP functions to meet problem specifications. The
GRAPES simulation is a goal-factored production system as specified in the
ACT* theory (Anderson, 1983)., The results are reported of the simulations
of a number of problems and these are compared to the human protocols.
GRAPES does simulate the top-down, depth-first flow of control exhibited by

DD "°"" 1473 EDITION OF 1 NOV 65 1S OBSOLETE

\

JAN 73 unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

T ——

T -

SECURITY CLASSIFICATION O i1S PAGE(When Data Entered)

¥

', 20) Abstract (con't)

rarEies g o i g

.Subjects and produces code very similar to subject code. Special attention
is given to modelling student solutions by analogy, how students learn from
doing, and how failures of working memory affect the course of problem ‘
solving,

“

-

Accession For

NTIS ¢ A&
DTIC T/3 >

Unermareed O
Juetitiortion |
By -

Distrib-tfon/

Availability Codes

— .

——

i£vail and/or
Dist Spescial

, -
a a4

SECURITY CLASSIFICATION OF Tuie pAGE(When Date Entered)

Y i Aot Chdenia RSP ..||Il|||illl ii L. .

1. Introduction

We have been studying how novices learn to program in LISP. This ic ;,orl of a more ceneral goal of
understanding how people learn complex skills (Anderson, 1982, 1983). A major part of the challenge
and interest in this is that cognitive skills have complex control structures that must be learned.
Computer programming is an excelient example of such a skill. The study of novices learning to
program in LISP quickly gets us to the core of the problem of skill acquisition. Writing LISP functions
involves a complicated control structure and it is the kind of control structure novices have never
dealt with. Please note that "control structure” refers here to the control structures governing the

programming behavior not control structures in the program.

1.1. The Data Base

" We have looked extensively at the first 30 hours cf ncvibe programming behavior of three subjects
(SS, WC, and BR). In these protocols, subjects studied a text on LISP - SS studied Siklossy (1976),
WC studied Winston (1977), and BR studied Winston & Horn (1981). We recorded their verbal
protocols, kept their paperwork, and kept a record .of their terminal interactions. The individual
session varied from 45 minutes to twe and a half kours, depending on what seemed to be natural
units and natural breaking points. Approximately one quarter Bf the session time was spent reading
and discussing the text; the other three-quaniers of the time was spent doing various exercises. The
subject worked with an experimenter who tried to do as little teaching as possible and to let the
student learn from the text. The main responsibility of the experimenter was to query the subject
about what they were thinking, why they tried various solutions, etc. However, if the subject had a

serious misunderstanding or was lost in the problems, the experimenter would intervene with tutorial

assistance.

We feel that we have a pretty good record of the learning that was occurring in these sessions.
Subjects were instructed not to think about LISP when they were not in the experimental session. It
seemed that it was easy for them to comply with this request. They were also not permitted to keep

the textbqok between sessions.

Whila the 30 hour protgco!s from these subjects has been the major source of data for theory
conatrizciion, wa have also looked at protccols fram these subjects m.uch latar after they had
;! continued their LISP education and also looked at protocols from relatively advanced LISP
programmers. [n addition, we have assigned various LISP 'problems to a large class learning LISP.
While we cannot get from this class source any information about the real-time problem.solving it

does provide information about the distribution of final solutions. This provides one basis tor judging

the representativeness of the solutions we see from our three subjects.

1.2. The GRAPES Simulation
We developed GRAPES (a goal-restricted production system) to model subject problem solving in
the context of writing a LISP function to calculate an input-ouiput specification. This program is an
interpreter for a set of production rules that write LISP cedz in a top-down manner. Fach production
has a condition which specifies a particular programming goal and various p:oblem spacifications
The action of the production can be to embellish the problem specification, wriie or change LISP
code, or to set new subgoals. Representative exampleé of such productions1 are: ,

IF the goal is to add List? and List2
THEN write (APPEND List1 List2)

IF the goal is to check that a recursive call to a function will terminate
and the recursive call is in the context of a MAP function
THEN set as a subgoal to establish that the list provided to the MAP function
will always become NIL after some number of recursive calls

We feel that the GRAPES simulations do a good job of reproducing the essential aspects of the
pfotocols that we observe. However, it is never the case that a perfect correspondence is cbtained.
We .could, of course, ‘account for any perturbation in the data by introducing an ad hoc rule that
would produce just that perturbation. However, we constrained ourselves to rules which we felt
reasonable to suppose the subject had acquired. We hope to eventually be able to explain the
perturbations on a principled basis. However, what is described in this paper is only an

approximation to such a final theoretical account. This fits in well with the view that development of

scientific theory is an approximating series in which each subsequent theory gives a better fit to the

N anmmesn s o o v T T T VT W W — - -

Ll g
R
sl

R
B S
-

data.

e

] . 1.3. Relation to ACT»

The GRAPES architecture is just a specialization of the general ACT#* architecture (Anderson,

1983) 1o achieve an efficient simulation of that architecture in the context of LISP programming. Like

ACT?=, it involves a dichqtomy between general declarative knowledge represented in the form of a
semantic network and procedural knowledge represented in production form. ACT=* involves a sub-
theory about how declarative facts are stored and retrieved and a sub-theory about how produétions
are mzatched, executed, and acquired. GRAPES incorporates the procedural sub-theory but does not
incorporata the declarative sub-theory (only for reasons of efficiency and simplicity). 1n GRAPES
declarative facts are simply stored and retrieved without error. GRAPES makes particularly heavy use
cf the ACT=* proposal for using goals to guide the matching and acquisition of productions. In ACT»
vehavior is crganized hierarchically according to a set of goals such that higher-level goals
decompcse into lower-level gcals. In ACTs it is alsc possible for productions to execute that respond
{o the data without any_goal specifications. However, to date we have not used such data-driven

producticns in simulating LISP programming behavior.

In ACT# there are two basic mechanisms for simulating production learning. The first, knowledge '
compilation, involves building production system rules that summarize the essential product of the |
computation of a set of rules. The second, knowledge tuning, invoives adjusting the conditions of
productions to make them more appropriate in their range of application. We have implemented a - '
knowledge compilation mechanism Within the GRAPES system and will describe its application later
in the paper. While a tuning process is also important in modelling learning to program, this has not

yet been developed in GRAPES. _ .

.Yd.

- "“l ‘)'J

Rt

1.4, Overview
The remainder of the paper will fall into four major sections. The first three will report on three
simulation efforts. With these sections as "data", the final section will draw a set of significant

conclusions about the nature of programming in LISP and the acquisition of this skilf.

2. REACHABLE
The first problem we would iike to discuss is thie REACPABLE problem, which was borrowed from
Barstow (1979). It is a problem too advanced to be attempted by any of our subjects in their first 30
hours of learning and so we only have protocols f_rom more advanced programmers solving it. it
serves to demonstrate the overall competence of the simulation program in terms of its ability to
simulate th_eAsolutions to relatively complex problems. The REACHABLE problem is also interesting in
that it tends to evoke a wide variety of different final solutions from subjects. Thus, it will serve as a
test of whether the same GRAPES ccntrol structure is capable of explaining the variety of

programming behavior that can be observed.

We will look at GRAPES reproducing two rather different solutions by two subjects. The individual
solutions and simulations contain a number o interesting features that will serve to support some of
the conclusions in the final section of the paper. In these simulations, we set as our goal to account
for the coding behavior of our subjects in terms of the actual lines of code they wrote. While we tried
to reproduce certain aspects of the protocol, there was no attempt to have a step for step simulation

of the subject. This goal will be attempted for the {ater problems in this paper.

The REACHABLE problem, as it was specified to subjects, is illustrated in Figure 1. The program is
supposed to operate on a directed graph like the one at the top of the figure. According to the
specification of the problem by Barstow (1979), the function is to be given three arguments - a start
node, a list of nodes in the graph, and a list encoding of the graph structure. The task is to find all
nodes reachable from the start node following directed arrows. Most subjects did not use the second

argument, the list of graph nodes, and some expressed puzziement that it was included since it

| S

6

seemed redundant with the graph encoding. The graph encoding is a list of lists wher2 each sublist
gives the conncaciions of one of the nodes. The first cfzmant in that cubliztis the nede iteelf and the
second element is the list of nodes connected to that node. The exact example given in Figure 1 was

used in explaining REACHABLE to all subjects.

2.1. Simulation of Subject WC

2.1.1. The Initial Plan. The first subject, WC, solved the problem in about twv:; hours and used a
type of technique particularly frequeng among novice prognfammers. That is, he tricd to first scive the
probilem by hand, then to identify the structure of his hand solution, and then to m'ap that hand
soluticn onto LISP. The basic structure of his hand solution was to start with tive start nocle; retrieve
connected nodes from it; add these to the answer; scan the answer for a node he had not'tried; if
there was such a node, add its connected nodes to mg answer; if not, terminate with the answer. The

- following is a particularly relevant portion of his protocol:

"One thing that occurs to me is to just start wandering through the network and keep
track of where | am. So | start at one, the start node, and say let's go look at the graph
subset of one”,

Our subject tried to map these steps into operations on ‘Iist structures. Figure 22 illustrates the
hierarchical blan that we think he developqd for performing operations on list structures. The plan
began by initializing the answer list to the start node. Then he had a chunk of behavior organized by a
control construct that we call repeat-uyntil failyre. This involves performing a set of operations until a
test results in a failure. We believe that this is a natural pre-programming control construct for most
subjects. It has an obvious relationship to the repeat-until-success construct that was an essential

part of the TOTE hierarchies of Miller, Galanter, & Pribram (1960).

Insert Figure 2 about here

REACHABLE

0

l
@

ARGUMENTS
START: 1

NODES: (1 2 3 4 5 6 7 8)

GRAPH: ((1 (2)) (2 (5 6))
(3 (4) @4 (3)
(5 (6 8)) (6 (1 5)
(7 (6))

ANSWER: (1 2 5 6 8)

FIGURE 1

(a) LIST OPERATIONS

ANSWER = REPEAT UNTIL
(START) TEST FAILS

TEST: SCAN PERFORM
ANSWER FOR

UNTRIED NODE

ADD CONNECTED FLAGNODE
NODES TO ANSWER AS TRIED

(b) (1)

(1)(2))

(1 (2 (5 6))

(1 (2 ((5 (6 8)) 6)

(1 (2 ((5 (6 8) (6 (1 5)
(1 (2 (5 (6 8]

FIGURE 2

The test in the repeat-until-failure loop involved determining whether there was an untried node on
the answer list. Qur subject thought of implementing this vaguely in terms of a scan of the answer list.
i ‘e had two operations to perform if he could find an untried member. One was to add its connected
nodes to the answer list. The second was to tag the node as tried. As best we can determine, our
subject had no mecharnism in mind for the tagging. In his mental simulations he just remembered
which nodes he had tried. A major reorganization of his plan occbrred later when he tried to
implement the marking of nodes as tried. However, he could have in fact implemented a LISP

function that was bagsically identical to the control structure in Figure 2a.

In part (b) of Figure 2, we have reproduced verbatim WC's sketch of how his plan would change the
structure ¢f tha answer list for the ex.ample in Figure 1 with each iteration through the repeat-until-
tailure. He thought because of the embedding in the GRAPH formalism his answer would become
more embecdded with each itération and he would have to finally flatten the structure. The lést line
illusi-ates his recognition that this procedure would generate repeats in the answer and he would

have to edit these regeats out.

2.1.2. Tire Initial Code. Our GRAPES simulation requires that we start the program off with a set of
data structures.in working memory representing the subject's initial understanding of the problem.
Then various productions can be matched to the contents of working memory and they will start
generating the LISP code. To simulz;te WC on this problem we put into working memory a
specification of the input-output relation calculated by the function and the hierarchical plan in Figure
2a.2 The first production to apply responds to the existence of this hand _sblution and sets as a
si,_yoal to map it onto a LISP function. The next rule to apply is the default rule for mapping:

IF the goal is to map a procedure onto LISP
THEN map its subprocedures

The two main procedures of the hand solution are the initialization of the answer list and the repeat.
until-failure. Therefore, it sets two subgoals to map these onto LISP. The code it puts out at this point

(def reachable
(lambda (node graph list)
D
D))

it has printed out the standard template for a LISP definition. This corresponds to the aimost
universal practice of our subjects who will whip out the hasic definition format before doing anything
else or thinking carefully about how they wiill write the LISP code. The two <?'s are GRAPES

place-holders for the code to achieve the two major subgoals of the plan.

GRAPES flow of controi proceeds in a depth-first, left-tc-right manner. Therefore, the program
next focuses on writing the code to initialize the answer list. The next two production rules to apply

are:

IF the goal is to create a structure
THEN create a varichle and use SETQ

tF the geal is to make a list
THEN use LIST

And the LISP code they create is:

(def reachable
(lambda (node graph list)
(prog (@List2)
(setq @List2 (list node))
(return <))

The first production results in the creation of a PROG structure to permit a local variable @List2 to
hold the answer. The second production recognizes that a list containing the start node can be

created with the LISP function LIST. Inthe context of a PRCG a RETURN is also inserted.

Now attention focuses on the goal of mapping the second part of the hand plan - the repeat-until-
failure. The next production to apply is:

IF the goal is to map a repeat-until-failure
THEN create a COND in a loop and give the COND two clauses where
one clause performs the test and the other clause deals with failure of the test.

It recognizes that a repeat-until-failure can be achieved by a two-clause COND structure in a loop.

T ——

The first ctause will perform the test and apply if the test is successful. The second clause will deal

with the case when the test fails. The code at this point is:
(def reachable
(lambda (node graph list)
(prog (@List2)
(setq @List2 (list node))
loop (cond (K75 <) (t (return)<M)))

(go loon))))
2.1.3. Reorganizaticn of the COND Clause. GRAPES now focusas on ceding *he condition for
the first COND clause.” This is where the program brings itself to face the issue of how it i3 going to
implement the tagging of the node as tried. The subject hit this same issue at this point. At this point

in time the following rule applies

IF the goal is to find an item on a list with a property
THEN code a test for that property
and then search the list linearly for an item with thar property

This sets the ptan of a finear search of a test and makes tha immediate goal deciding how to code the
test used in that search. Because a test for not tried is _negative, the following rule agplies:

IF the goal is to test if something does not have a property
THEN use NOT and set as a subgoal to test whether the item has the picperty

Then the following rule applies

IF the goal is to test if an item has a property
THEN create a list which will be updated with all items that have that property
and test whether the item in question is a member of that list.

The program at this point has planned the code (NOT (MEMBER <? @!ist4))where < will be
expanded to code the item and @list4 is the answer test. It now turns to its gcal of applying this code
in a scan through the list:

IF the goal is to search a list Iinearly for an item that satisfies a test
and a set of operations are to be performed on the item
THEN create a two-clause COND structure in a LOOP
where the first COND clause tests for an empty list and returns the answer
and the second COND clause tests for the property and performs the operations
and the list is reset to its CDR after the COND

The code at this point is illustrated below:

'
IR

PPy G

(def reachable
{lambda (node graph list)

(prog (@L.ist2 @List 1)
{(setq @List2 (list node))

loop (cond{(not @List2)(return @List4))

((not (member <?> @List4)) <P))
(setq@list2 (cdr @list2))

(golonp))))

The original COND siructure is replaced by this new COND structure.

2.1.4. Finishing the COND Clause. The next thing GRAPES focuses on is how it will code the
slement 1 the unfinished condition for the second COND clause. it recognizes that the eiement is the
first mernber of @list2 and the following basic rule applies:

IF the goal is to code the first element of a list
THEN use CAR

Attertion now focuses on coding the action for the second COND clause. This action corresponds to
the operaticns in Figure 2a to be performed on untried items. Therefore, the following rule applies:

iF the goai is to map a hand plan
and the hand-plan performed a set of operations
THEN sct as subgoals to map these hand operations

This creates the goals of mapping the operations of adding the connected nodes to the possibility list
and tagging the element as tried. The following four production33 apply in sequence to code the
operations of adding connected nodes to the possibility list:

IF the goal is to reset the value of a variable
THEN use SETQ

IF the goal is to add two lists together
THEN use APPEND '

IF the goal is to get the second member obfa list
THEN use CADR

IF the goal is to retrieve a sublist that begins with a key
THEN use ASSOC '

The program then focuses on the subgoal of coding the tagging of the item as tried. The following
two rules apply in order:

IF the goal is to give an item a property

.

- 1
and there is a list to be updated with all items with that have that property
THEN add the item to the list with the property

IF one wants to add an item to a list
THEN use CONS

The final code is:

(def reachable
(lambda (node graph list)
(prog (@List2 @List4)
(setq @List2 (list node))
loop (cond ((not @List2) (return @L.ist4))
{(not (member (car @List2) @List4))
(setq @List2
(append @List2 (cadr (assoc (car @List2) graph))))
(setq @List4 (cons(car @List2) @List4))))
(setq @List2 (cdr @List 2))
(go loop))))

One thing that this example obviously iilusirates is that a lot of specific ruies underlies the generation
of code in LISP. One of the basic claims we will be making about learning in LISP is that it consists in

a major part of the acquisition of many such sp&cial purpose rules.

Below is the LISP code produced by WC fer this problem:

(def reachable
(lambda (list graph node)
(prog (@List4 @List2)
(setq @List4 (list node))
(setq @List2 (cadr (assoc ncde graph)))
loop (cond ((not @List2)(return @List4))
((member (car @List2) @List4)
(setq @List2 (cdr @List2)))
(t (setq @List2 (append @L.ist2(cadr
(assoc (car @List2)graph))))
(setq @List4 (cons (car @List2) @List4))
(setq @List2 (cdr @List2))))
(go toop))))

| have renamed the variables in the subject’s program to correspond to those used by GRAPES. Also
the subiect wrote a helping function rather than the CADR-ASSOC composition. There are three
significant differences in the final code. First, the subject initializes @List2 and @List4 with the

results of the first iteration through the loop in the GRAPES program. Second, he has encoded the

—_—

adaiad 4 L saiman ks a.aea ans sadh AT ...

T -

Y

P PR RS

gk s i o r,..'
LT - LRI S

12

NOT-MEMBER predicate l_)y m::king it the default T clause after a MEMBER test. Third, the resetting
of @list2 occurs within each clausa. Each of these differences couid -have bzen eliminated by
introducing specific production rules or variants in existing rules. However, such tuning seemed
pointless and we wanted to use the same GRAPES rules _for a variety of problems by a variety of
subjects. In any case, the degree of correspondence is quite good given the wide range of solutions
that we have seen for REACHABLE. The reason the solutions are similar is that GRAPES and the

subject begin with the same working memory state.

2.2, Simulation of Subject 2

In contrast to subject WC, subject 2 did not use a hand simulation but rather worked from a

definition of the REACHABLE relationship. He worked from the following definition which he

articulated

Node Y is reachable from node X if
(a) There is adiract path from Xto Y
or (b) Thereis a node Z such that
(i) There is a direct path from Xto Z
(ii) Node Y is reachabie from Z.

The subject attributed his ability to formulate this definition to prior exposure tc graph theory. In
simulating this subject, we loaded a representation of this definition in working memory together with
the same specification of the problem.as we gave to WC. We ran this simulaiion with the same rule
set that we used on the first simulation. This will provide a test of whether the rules were especially
tuned to reproduce WC's solution. In what follows we will star the rules that were also used in the

prior simulation.

2.2.1. The initial Coding The first three rules to apply are given below in order:

Rt: IF the goal is to code the answer
and the answer is defined as all members
with property A or property B
THEN set as subgoals to -
1. code all the members with property A
2. code all the members with property B
and UNION these together

R2.* IF the goal is to get the second member of a list

1.
» B " -

Akt

JPY I YRR

13

THEN use CADR

R3:* IF the goal is to retrieve a sublist that bagins with a key
THEN use ASSOC
The code at this point in time is given below:

{def reachable
{lambda (node graph list)
(union (cadr (assoc node graph)) <?3)))

The first rule translates the OR in the definition of REACHABLE into a UNIOM. The next two rules
we saw apply in the previous simulation and in this context they encode the directly connected part of

the REACHABLE definition.

The program now turns to coding the distantly reachable nodes (part b of the definition). Then the

following rules apply:
R|4: iF the goal is to oktain all the elements which have a relation
to any member cf a list
THEN use MAPCONC on that list with a function that will return all the
elements that have a relation to an argument

_O_l

IF the goal is to code a relation
and that relation has been coded earlier
THEN create a variable
and set it to the value of the earlier coding
and use it in the current coding

R6: IF the goal is to code a function to achieve a relation
and the function is to be called by a function that is trying to achieve the same relation
but their arguments are different
THEN create a recursive call to the function
and set as a subgoal to check that the recursion will terminate

The code that results at this point in time is given below:

(def reachable
(lambda (node graph list)
(@function1 node)))

(def @functiont
{lambda (node)
(prog (@LVar1)
(return
(union (setq @LVar1 (cadr (assoc node graph)))
(mapconc '@function1 @LVar1))))))

14

Production R4 respcrided to the definition of distantly reachable nodes by planning to map a.

function that obtained the reachable nodas through a list of the immediately reachable. Prcduction
RS recognized that the immediately reachable had already been calculated and set a local variable
LVar1 to these. Production R6 recognized that the function to be mapped was identical to the current
one and created a recursive call. It is at this point that the simulation splits the calling function,
reachable, from the recursive function, @functioy, which will just take one argument. This is done

to enable the simple recursive cail in the MAP context.

2.2.2. Terminating the Recursion The subygoa! that is set by this last function is to guarantee that
the recursion will terminate. At this point the fcllowing two rules apply to refine this goal into
something that can be achieved.

- R7: IF the goal is to check that a recursive call to a function will terminate
and the recursive call is in the context of a MAP function
THEN set as a subgoal to establish that the list provided to the
MAP function wili aiways become NiL.

R8: IF the goal is to establish that a list will always beceme NIL
and it contains part of the answer to a problem
and the full answer is finite '
THEN set a subgoal to avoid repeating elements that
are already part of the answer

Thus, the program reasons to the conclusion that it does not want to repeat answers in the @LVar1
structures that it calculates. The following rule recognizes a technique for achieving this
Re: IF the goal is to avoid repeating elements on a list of answers
THEN create a global list to hold the answers so far
and set as subgoals
1. to edit the list each time it is created so that it does not contain

elements in the global list
2. to update the global list each time new answers are obtained

A variable @GVar1 is created to serve this function of a giobal variable. Since it only has to be
global to the recursive function @functiont, it is made a PROG variable in the calling function
REACHABLE. The follawing rule applies to edit out repeats when the variable @LVar1 is calculated

R10: IF the goal is to find all the members in one list that are not in another

it et ddnd 2k

THEN use LDIFFERENCE

The function at this point in time is:

(def @function
(lambda (node)
(prog (@LVar1)

(setq @GVar1 <®)

(return

(union (seiq @LVar1 (Idifference (cadr {assoc node graph))

@GVar1)).
(mapconc '@function1 @LVar1))))))

The remaining goal is to code the updating of the global variable so that it inciudes the new nodes
calculated as the value of @LVar1. However, @LVar1 is calculated after the intended updating of the
global variable. Therefore, the following rule applies

R11: IF the argument needed is embedded inside some fater LISP code
THEN extract the code and bring it to where it is needed

Then the following rule applias to encode the updating of @GVar1.

R12:* IF the goal is to add two lists together
THEN use APPEND

The finai LISP code for @functiont is:

(def @functiont
(lambda (node)
(prog (@LVar1) :
(setq @LVar1 {Idifference (cadr (assoc node graph)) @GVar1))
(setq @GVar1 (append @LVar1 @GVart))
(return (union @LVar1 (mapconc '@function1 @LVar1))))))

In contrast to the previous GRAPES simulation where the correlation between subject code and
program code was partial, this GRAPES simulation precisely reproduced the code of the subject
(after renaming of variables). The solution to this problem is quite different from the first, but was
produced by the same GRAPES program with just a different initial working mernory. Thus, the

REACHABLE problem can evoke a wide range of behavior from GRAPES and from subjects.

Despite these considerable differences, the two protocols produced by GRAPES have an important

feature in common with each other and with the protocols of all the subjects we have observed on the

PPN |

ad PN

| ®
m__ P
” 0SSV -3SN
]
2 2
NOILONNA 1S17 HdVY9 40
3002 3009 1s11ans 3002
91vV09 G1v09 v 1v09
> N
IONODdVW -3SN ¥yavo-3sn .M
-—
3718VHOV3Y 379VHOVv3Y il
ATLNVLSIC ATILVIGIWNI .
3009 3409
cIv09 21V09]
NOINN-3SN |
31aVHOV3Y
30090 w

11VO09

GOAL{

» CODE
. REACHABLE
NEWGOAL1
CODE
@ FUNCTION 1
NEWGOAL 2 NEWGOALS
CODE UPDATE
RELATION @ GVarl
K
NEWGOAL 3 ' GOAL3
SET CODE
@ LVar! DISTANTLY | v
M REACHABLE
)u\si-mpcouc
GoAL?Z2 NEW GOAL 4 GOALS GOALSG
CODE EODIT CODE CODE
IMMEDIATELY IMMEDIATELY @LVart @ FUNCTION
REACHABLE |y | REACHABLE o v
lUSE-CADR ?
GOAL4 .
CODE SUBLIST
OF GRAPH
v
USE-ASSOC '_1‘
1
FIGURE 4 .
.
i a——— S —

\

e e A

16

problems. This is that they involve a reorganization of the LISP function. For subkiject 1, this occurred
when he revised the CCMD structura. For subjact 2, it cccurred when ha intreduced global variables
to keep track of tried nodes. The reorganizations for all subjects are concerned with the problem of
avoiding looping when searching the graph. Many of the subjects, including these two, were aware of
the danger oi looping from the outset, but simply could not anticipate how it would impact on the

problerm solution until they had gotten some distance into their coding.

2.3. The Goal Structure

The pravious @xamples illustrated how performance is controlled through tha interaction of a large
number of rules. These rules are organized according to a hierarchical goal structure. The various
rules respornid to goals and can creat.e subgoals. So in subject 2's protocol after rule R4 the goal
structure in Figure 3 had been created. The program generates this goal structure in a left-to-right
deptn-fitst manner. The code is written in this same order. in fact the nierarchical structure of the

goals often is linked into the hierarchical structure of the code.

...................................

...................................

At this point there are two open goals indicated by question-marks at the terminal nodes in Figure
3. These are the goals of co&ing the list which the function is supposed to be mapped through and of
coding the function itself. Rules R5-R9, which respond to these goals, do not just unpack these into
further subgoals. Rather they transform the original goal structure. The goal structure after their
application is illustrated in Figure 4. The recursive function @function1 for use in MAPCONC has
been created and inserted between the REACHABLE function and the use of UNION. The code of
SETQ has been inserted before the coding of the immediately reachable. Open goals are the editing
of the @LVar1 (the newly connected nodes) and the updating of @GVar1 (the list of already
connected nodes). GRAPES selects the left-most open goal to work on, which in this case involves

editing the local variable. In achieving the remaining open goals, one further transformation of the

goal structure is produced. This involves taking the structure under the SETQ for @LVar1 and .

(()(d) (@) (W) (D08)(DoVv)(aV)(D8V)) =
(08 V), 13S43IM0d)

'
o

5

FIGURE

17

moving it up in the goal tree to before where @GVarl is set. Note that order in the goal tree does not
necessarily alvays correspond to order in the code. There is an example of non-correspondence in
Figure 4. The function UNION was coded before the updating of the global variable. This is quite
typical in programming behavior where subjects will code later lines first and then insert the earlier
lines. Another example of this occurred in the simulation of subject 1 where the code (not (member

Wwas decided
M @List4)}\before the COND stiucture was craated into which it was inserted.

The hierarchical generation of goal structure and subsequent transformation of these structures is
similar in character to the conception of planning in Sacerdoti (1977). Anderson (1983) has argued
that this kind of control structure is quite ubiquitous in cognitive skill. For instance, it is found in

natural language where phrase structure is the sign of the hierarchical structure and transformational

structure of language is the sign of goal transformations.

As these examples make ciear, a program develops out of a series of successive reworkings of an
initial plan. This is very much like the successive refinement model of algorithm design advocated by
Kant and Newell (1282) -- although their formalism for representing plans differs considerably from

ours.

3. POWERSET

The POWERSET example occurs towan"ds the end of our 30 hour learning sessions and is the most
demanding of the problems that we pre;ent to our subjects during the 30 hour learning. It differs from
REAC-HABLE in that it tends to evoke the same solution from all subjects. Th_us. the coding behavior
of GRAPES corresponds quite closely to all subjects at the level of lines written. However, typical
subject behavior contains numerous errors, recoveries, and false starts not seen in our simulation.
After discussing the program’s behavior on POWERSET, we will discuss some of the errors made by

one typical subject on this problem.

Insert Figure 5 about here

18

The POWERSET problem as it is presented to subjects is illustrated in Figure 5. The subject is told
that a list of atoms encodes a st of elements and he is to calculate the powerset of that set -- that is,
the list of all sublists of the original list, including the original list and NiL. Each subject was given an
example of what the POWERSET was for a three element Ii;t. The three subjects we ohserved spent
from under two hours to over fcur hours solving this problem. In each case, they spent about
one-third of their time uncovering a key insight and the other two-thirds of their time working out the

LISP code that would capitalize on this insight.

We have also assigned this problem to a number of programming classes and caihered infermal
problem solution reports. There are two types of solutions which subjects are prone to atiempt and
which tend to distract them from the c;rrect insight:

1. There is a strong tendency to try to implement the way they would solve the problem by
hand. For most subjects this hand solution is one'in which they calcuiate the null list,

then all the singleton lists, then all the doubleton lists, etc.

2. Some subjects are distracted by the fact that certain sublists can be achieved quite easily
by taking CDR's. So, given the example (A B C), (B C}, (C), and () can be gotten by

taking successive CDR's. This leaves the difficult task of calculating the non-CDR's.

The essential insight is illustrated in Figure 6. This involves noticing the reiationstip between the
POWERSET on the full list and POWERSET on the tail (CDR) of the list. In Figure 6 we denote by X
the result of POWERSET on the full list and we denote by Y the result of POWERSET on the tail of the
list. Subjects noted that Y provided half of the members they would need for X. _Second. they noted
that the other half could be gotten from Y by adding A, the first member of the list L, to each number
of Y. Thus, X is formed from the lists Y and Z'. where Z is formed from Y by adding the first member of

L to each member of Y.

..............................

L=(A BC)
X=(POWERSET L) Y= (POWERSET (CDR L))
- ((ABC) = (B C)
(A B) (B
(A C) (c)
(A) ()
(B C)
(8)
(c)
())
X=Y+Z WHERE Z=((A B C)
(AB)
(A C)
(A))

:

Z IS FORMED FROM Y BY ADDING A TOEACH
MEMBER OF Y.

FIGURE 6

PR Y e mm kb

.
. I . T

19

The decision to consider the relationship between (POWERSET L) and (POWERSET (CDR L)) is
not just a stab in the dark. It is dictated by a recursive programming technique that the students were
taught called tail-recursion or CDR-recursion. This technique involves assuming that the function will
return the correct result for the CDR of the list and trying to use this result to calculate the correct

answer fur the whole list.

3.1. GRAPES Problem Solution

Figure 7 illustrates GRAPES' goal structure for this problem. GRAPES keys off the fact that the
argument is a list to attempt the CDR-recursion technique. This technique involves two - subgoals.
One is to write the code for the recursive step and the other is to write the caode for the terminating
step whicht is when the argument to P(SWERSET is the empty list, NIL. Under the recursive step, there
a2 tao subgoals. One is to characterize the relationship between POWERSET of the full list and

POWERSET of the tail of the list. The other is to convert that characterizaiion into LISP code.

..............................

A3 it is not our concern to model the pattern-matching abilities and. set-theoretic knowledge that
permit this insight into the recursive relationship, we basically provided GRAPES with a
representation of this relationship. With the relationship idéntified, GRAPES then turns to the goal of
converting that into LISP code. The answer, X, is the sum of two lists, Y and Z. GRAPES recognizes
that this can be achieved by using the LISP function APPEND with the two arguments, Y and Z. it
therelore sets as subgoals to calculate Y and Z. It recognizes that under the assumption of CDR-

recursion. it can use the recursive call (POWERSET (CDR L)) to calculate the value for Y.

Then GRAPES turns to coding the second argument, Z. Z is formed from Y by adding A tq each
member of Z. GRAPES sets out to write a new function ADDTO that will form this second argument.
The goal structure for the working of ADDTO is illustrated in Figure 8. The function is written with to

the same cdr-recursion technique as is POWERSET. More advanced students might recognize this

......

((7 ¥@2) L3SH¥3IMO0d) (THVYI)

! q

(A) ANODJ3S (v)1sHld .

/ \ (7 ¥@2) 135HIMOJ)

SLN3WNOYY NOILONNA NOISHND3Y
HO3HD J1IYM WOod4d 139

(Z) LNIWNOYV (A} AINIWNOHY

AGNOJ3S 1Ssyid
3903 TMONMX SINIWNNOYV 3903 TMONM
(), AHO3H1-13SNO 1VD MI3HD AYO3HL1-13S NO 11VD
ON3ddVv d,
asn
((714Q2) L3SY3IMOJ) ANV
ANIVA (TN 13S43IM04)H0S dIHSNOILVI3Y (113SYIMOJ) NIImL3E

ONILYNINY3L 3000 3NMIVAINIWY313d IAISHNI3Y 3403 dIHSNOI1V13Y ONId

N ™~

NOILIONOD d31S
INILVYNIWY3L1 04 3AISYNI3Y 00

/\v

NOISHNI3Y-HAD AYL

»

() L3SYIMOd JL1UM

FIGURE 7

as basically a simple iterativa structure and solve it according to a PROG or MAP structure, but we are
simulating LISP students at tha point where they have nct been taught ahout PROG's or MAP's and
only know about recursion within LISP and not iteration. The final code written by GRAPES for

ADDTO is given below:

(def addto
(lambda (a y)
(cond ((noty) nil)
(t (cons(cons a(caryj))
(addto a (cdr y))))

The prcgram returns .from writing ADDTO and its further behavior is illustrated in Figure 7. 1t next
decides hdw to calculate the arguments to ADDTO. After this it turns to coding the terminating
condition for POWERSET. Here it calls upon its set theory kriowledge to determine that the powerset
of the empty set is a set containing the empty set. Given the coding principles of this problem, it

translates this into ’({)). ts final code is:

(def powerset
(lambda (1)
(cond (tnot) ()
{t (append (powerset (=dr 1})
(addto (car !) (powerset (cdr 1))))
m

3.2. Comparison to WC

As illustrated above, given the insight, the ccding of POWERSET provides very little difficulty for
GRAPES. It can be coded directly from recursive relationship in a straightforward hierarchical
manner. It does not involve the complex transformation that we saw with REACHABLE. However,
individual subjects spent from 1 to 3 hours converting this insight into code. While the overall
structure of their protocols is like that of the simulation and their final functions certainly are similar,

these subjects spend their time making errors of coding and recovering from these errors.

The subject WC's protocol is easiest to discuss because it involves the fewest errors. Like the

it 4

(A ¥VI)

|

(A)1syid v

SININNOYY
(LA ¥Q92) voiaav) MI3IHD

SNOJ 3Sn

YIMSNY JO IN3W3T3
1534 3402 a3aadav 3409

. HIMSNY

HIMSNY ALdWN3 SINIANNOYHY Ol NOlILIQQV

() JZINS90D23Y MOIHD JZIN9QDJ3Y
4 SNOJ Jsn ((A¥GD) V 0LAQY) ANV
INTVA (1IN V 0100V 404 NOILYT13Y (A V 0LOQV) NIIMLIE

ONILVNIWY31 300D 3NTVA 3NIWH313d 3AISHNO3Y 30093 dIHSNOILVI3d ONId

~N ~. 7

NOILIGNOD d31S
ONILVYNIWY3L 04 3AI1SHNO3YH Od

4/\.\

NOISYNI3Y-¥AI AYL

a

(A v)0L4ddv 3L1UM

FIGURE 8

program, he consciously z_lppiied CDR-recursicn as a straiegy, diccovered the relationship between
(POWERSET L) and {(POWERSET (CDR L)), and clazrly articulated to himself the relaticnehip that we
denote X = Y + Z -- specifically, that the answer was the sum of twa lists. He then turned to coding
the relationship. Despite the fact that he had seen the relationship as the sum of two lists, he first
turned to trying to encode just Z. Thus, he misremembered the relationship. After a minute thinking
about it, he spontaneously corrected himself and recognized that he would have tc APPEND.two lists
together. Like GRAPES, he realized' that one argument to APPEND, Y. could be coded as

(POWERSET (CDR L)).

He then turned to writing the code for Z and his first code was (UNION (CAR L} (PCWERSET (CDR
L))). UNION is a function which combines two lists and avoids repeats. This clearly will not give Z. it
seems he has a vague specification in warking memary of combining A with Y and UNICN matches
this specification on the basis of it heing a combining function. WC knows guite wzil what UNIOM
does. As evidence of this, he corrects his code a couple of minutes iater, and articuiates what is

wrong without intervention of the experimeriter.

Like the GRAPES simulation, WC coes not have the concept of an iterative cperation as distinct
from tail recursion and so analyzes ADDTO as another case of tail recursion. When he first turned to
coding the iteration or recursion step and he wrote (CONS (LIST A (CAR L)){ADDTO A CDR L}))). This
differs from the correct code in that the function LIST is used rather than a CONS. Rather than
combining A and (B C) to get (A B C), this will combihe them to get (A (B C)). Once again we see on
our subject’'s pari the confusion of two similar functions--in this case LIST, which makes its
arguments elements of a list, is confused with CONS, which adds its first argumeqt to the list which is
its second argument. This is all the more interesting because this line of code also contains a correct
use of CONS. It needs to be stressed thag upon reflection. WC knows quite well the distinction

between CONS and LIST. Again it is the matter of sloppy retrieval in the course of problem solving.

Then WC turned to writing the appropriate code for the terminating condition--i.e., when ADDTO is

PEPR ST

called with arguments A and MIL. His first thought is that he should add A to this empty fist and return
(A). Thatis, he has lost sight of the fact that the second argument to ADDTO is a list of lists and he
should add A to each sublist. This is another example of the subject losing track of what it is that he
had intended to do. The subject discovered the probiem with this code by mental simulation and put

in the ccrract terminating value, namety, NIL.

At this point, we typad the function definition into the terminal and tried it out oﬁ some sample
problems. By tracing the function, he spotted and diagnosed the problem caused by his use of LIST
rather than CCNS. He changed this and the function ran correctly. [t should be noted that WC
corrected this problem without help from the experimenter and without looking up CONS or LIST in

his text.

Having completed ADDTO, he then returned to writing POWERSET. His first remark was "Now,
why aid ! write ADDTQO?” He had completely forgotten the series of goals that led to this. He had to
re-read tha code he had written to reconstruct his goals. Thus, GRAPES clearly difiers from WC in

that it has perfect memaory for the goal structure in Figure 7.

After he reconstructed his plan for POWERSET, WC turned to .planning the terminating condition.
Hizs lirst inclination was to return NIL as the value when POWERSET was called with the argument
NIL. This was the only place that we iritervened with some suggestions. We pointed out that the
powerset is defined as the set of all subsets of a set. A set itself is considered a subset of itself.
Therefore, ithe set itself was among the sets in the powerset of a set. Thereforé. among the elements
of the powerset of the empty set should be the empty set itself. Thus, the result for POWERSET of Nil
should be (NIL) or (()). WC was completely unconvinced by this argument but obediently returned

(NIL) as the result in the terminating condition.

Then we typed the function into the terminal and watched it run with a TRACE on POWERSET.

When he saw POWERSET return (NIL) for the value of NIL and when he was how this result was used

by higher levels of POWERSET, he remarked that he now understood why (NIL) was the right value

i

23

for the terminating condition. He still did not understand our logicai argument but he had a.

procedural understanding of why the result was essentiol to the correct working of the function.

There is a close correspondence between WC and GRAPES in the overall flow of control among
goals created by the decomposition strategy. However, there are frequent faillures of memory on
WC'’s part which are not part of the simulation. He both loses track of partial proclucts calculated in
the course of planning a function and incorrecily retrieves functions from memory. It needs to be
emphasized here that WC is a very intelligent and capable person. So these errors are information
about the nature of being a novice in LISP arcgramming and not about WC. We have observed a
similar high frequency of errors ih all our novice subjects. Such errors are less frequent with
advanced LISP programmers. It is also noteworthy that errers like the LIST-CONS confusion are
almost non-existent when subjects are asked to execute a command at the top-level of LISP. They
only come out embedded in the context of a problem with considerable working memory load. (A
recent experiment conducted on a class of 60 novice programmers has confirmed that LIST-CCNS
confusions are more commaon when the function use is embedded within the other functions). A clear
implication of this is that a major difference belween the current implerﬁentation of GRAPES and our

subjects is working memory capacity.

3.3. Analysis of Retrieval Failures

Working memory failures are clearly the cause of certain problems in the protocol like (1) forgetting
that the answer to REACHABLE was a su'm (Y + Z) of lists; (2) forgetting that the argument toc ADDTO
was a list of lists; (3) forgetting why ADDTO was written. We think working memory failures are also

responsible for the incorrect retrievals of functions like UNION and LIST.

The following is our analysis of the LIST-CONS confusion. It is similar to what Norman (1981)
called a description error. We assume that the subject represents as his goal

1. Tocreate aLIST L

2. where the first element of L is A

3. and wiere the rest of the list consists of B
This matches the specification of CONS. On tha other hand, if the third clause above had ¢onsists
replaced by contains, then it would match the specifications of LIST. If we assume that the relation
contains is simpler than consists and involves a subset of its' semantic features, we would predict that
subjects would tend to lose the distinguishing features under heavy memory load and retrieve LIST
instead of CONS. Also, this analysis would predict that CONS shouid not be intruded instead of LIST.
This asymmetry is clearly the case in our.protocols. The asymmetry has been showr: ic be statistically
reliable tsn large-scale class experimenis as well.* This analysis is also consistent with a different

Cow
W@I=@@NE crror that we will see in the next protocol.

ltis interesting to épeculate why there should be this contains-consists confusion and why containg
should be more primitive. In standérd LISP conventions consists would be mapped directly into tail
and contains would be defined indirectly in terms of tail. However, this iz apparently not the way the
novice programmer thinks of it. Perhaps, the novice's thinking is dominated Ly the marks that denote
list structure, particularly the parentheses. The representiation of “the rest of X containg Y" might be

represented as "X = ...Y") or "Y occurs just before the right parentheses of X". The representation

of "the rest of X consists of Y" might be represented as "X = Z) where Y = (Z}" or "2 is what occurs

between the left and right @entheses.o_f Y and Z occurs just before the right parentheses of X". The
underlined part in the above representation is the extra information which distinguishes consists from
containg. If this information were lost or misrepresented in working memory then LIST would provide
the best matching pattern to the goal specification.5 A somewhat different way of putting the point is
as follows: in the definition of LIST the argument Y is a proper subpart on the answer X. In contrast,

the argument is not a proper subset of the answer in the definition of CONS. It is cognitively simpler

when the answer preserves the structure of the argument.

4. ONETWO

In the previous protocols, we contented ourselves with having GRAPES model the overall flow of

B |

) amn sen i ot

v

25

control and the correct codings of the subject. in part this was because the complexity of the
protocals makes a detailed simidation extremely burdensome and perhans impossible, In the
simulation of the ONETWO protocol by subject SS we aspired for a much more detailed level of
correspondence. This protocol is just over an hour in length. [t occurred at the sixth hour of the
learning pratocol. It is also interesting because it contains within it an example of a significant act of

learning. This involves the acquisition of new problem-solving operator.

The ONETWO problem required the subject to write a function which would take a list és an
argument and return a new list consisting of the first two elements of the argument list. - The LISP
functions that the subject knew at this time included CONS but the subject had not yet learned about
LIST. She knew about CAR and CDR .and with these she had defined functions that would return the
first, secand, and third arguments of a list. These were the only functions that she had written up to

this paint in time,

A 1. Initial Attempt at ONETWO

She flailed at writing the function ONETWO and the experimenter suggested writing a simpler
tunction, ADDTWO, which would take two arguments and make a list out of them. This problem she
was able to make some headway on. It is interesting to speculate why ADDTWO was more tractable
than ONETWO. As we will see, the basic problem and its soluti.on d'iq‘ not change in going from
ONETWO to ADDTWO. However, by reducing the complexity of the task .6y one [evel, the burden on

working memory was reduced so that the subject was better able to match operators.

Figures 9-14 illustrate the simulation's attempts to solve ONETWO. Given the perfect
correspondence between the simulation and SS's protocols, we irfer that these figures aiso describe

the gcal structures that were guiding her problem solutions.

........................

........................

Figure 9 illustrates the first work that was done on the ADDTWO subproblem. The first operator

[

u ¢

, WRITE
| ADD TWO
3 CODE FHECK
y ADD TWO CODE
7‘ CODE- CONCETE-EXAMPLE ‘L
/‘V\
MAKE UP CODE CHECK MAPTO
EXAMPLE EXAMPLE CODE ABSTRACT
EXAMINE EXAMINE EXAMINE
ARG ARG?Z2 RESULT
- (A B) (C D) ((A B) (CD))
. v v v
: .
r' FIGURE @ .

&

R R

26

decomposes this into the subgoals of coding the function and checking the code. The first operator
sot stthgoals to come up with concrete examples of the input to ADDTWO and what its cutput chould
be, to find some code that could be typed at the top level that would convert the concrete input into
the concrete output, to check this code, and then to map ihis code into an abstract function. The
inputs she chose to pass to ADDTWO were (A B) and (C D). Why she chose list argunients we are

unsure. The result she wanted for these inputs was ((A 8) (C D)}.

Figure 10 illustrates the process by which she decided how to create this example at the top level.
After deciding on the exampie, she went through an episode where she explicitly reviewed the
definition of all the functions she knew, searching for an appropriate one. She selected CONS. We

represente_d. the definition of CONS to GRAPES as

The first argument of CONS is any S-expression and the second argument is a list. Its
€ osultis a list. The first element of the result is the first argument. The rest of the resuit

consists of the second argument.

She and GRAPES choose CONS on the basis of the fact that a list was wanted and CONS makes lists.
Having selected EONS the subgoals were now to determine what arguments to pass to CONS in order
to get the intended result. Note that thisis a differént use of CONS than in the previous simulations.
Previously, GRAPES knew both what the inputs and the result were and selected CONS because it
would map one onto the other. Here CONS is chosen solely on the basis of its result and it is

necessary to decide what arguments to pass to it.

........................

The critical piece of information in selecting the first argument is the definition statement The first

element of the resylt is the first argument. GRAPES interfaces this with the desired result, ((A B) (C

D)), to determine that the correct argument should be (A B).

Next, SS and GRAPES turn to the second argument. The appropriate part of this definition is The

rest of the result consists of the second argument. Matching this would retrieve ((C D)) as the second

argument. However, our subject retrieved (C D). We assume, in line with our discussion of the

o

Py

N

((@o)(8v)y-
(@ a)(8 V) ‘ 4 4
JYVANOD 41vd3y (@ D) (8V)
FLVINNIS 1S17-V A, \—
ATTIVLNIW | T SLNVM-SNOD ININNOUV] [INIWNOYV
, | 33093 r @ ONODJ3S 1Sy14
MOFHO / X714 ||® aNid ANl
NRENDY: ﬂ SLNIWNOYV
(32 (8 V) anid =
Al(@oNg V)| Al SNOD A
JHVdWOI asn o
3LVINNIS NotLoNnd T =
ATIVLININ| ~3SO00H) A w
1IvdLsav A 13009 A 31dWV X3 JTdWV X3
OLdVWN NI3HO 3009 dN IAVIN

31dNVX3-3134ONOD-300D

omi aayv
34069

A

deioasiuaioation i

27

LIST-CONS confusion, that the semantic features of consists were partiaily lost and this statement

bacamea Tha ragt of the result contains the sacond arqument, Thus, the same error that causas LIST

to be retrieved rather than CONS will produce this error. We manipulated GRAPES' working memory

so that it would produce this error.

The subject and GRAPES mentally simulated what the outcome would be of the code (CONS '(A B)
(C D)). This involved retrieving the definition of CONS again. As evidence thai her definition of
CONS was not in error, she correctly determined that ((A B8) C D) would result as an answer. This
cerresponded to an error she had =ncountered frequently and we assume she had compiled an
operator to repair this which embedded the second argument to CONS in an exira list. in this way,

she and GRAPES recover from their error and malz up the concrete exampie (COMNS '(A 3) '({C DY)).

This concrete example is different than the concrete example in the first REACHABLE simulation,
but it is serving a similar function. In REACHABLE the subject had solved 3 prablem by hand and
used the structure of the hand sclution to éuide the LISP code. Here ihe subject hss actualiy creat
some LISP code that can be typed into the top level of LISP and is going to use the structure of this
code to guide the creation of an abstract LISP function. In neither case is the mapping from concrete

to abstract trivial.

4.2. The Mapping

........................

Figure 11 illustrates the simulation of SS's initial attempt to map from the ccncrete code to an
abstract LISP function. First she maps CONS in the concrete code into CONS in the LISP function.

At this point the structure of the function is

(def addtwo (lambda (one two)
{cons <D LDY))

The remaining task is to map the two concrete arguments into abstract arguments. She first focuses

on mapping (A B). Thé following rule applies:

OM1
AJJHD

ONId dVIN

~1((a D))
dVW

3NO
AJ3HD

aNId dVN

AlE V)
dVW

»

»
((a2))

%

GNOJ3S
aNtd

\/
(8 v)

|

N LSYIH
aNid

1Inv43a SINIWNOYY oz_b\V

SNOD

4 3sn

A zo:bz:utuwoozoﬁ

SNOD
A Emstore
11 D<Lw0é
1ovalsav 3400
OLdVW MD3IHD

%

31dAV X3
34090

\/

J1dWVX3
dNINVNN

JNTdANVYX3 -31380NOD~-300D

oMl dav
3d02

FIGURE 11

)

28

IF the goal is to map a concrete expression to LISP
and the expression is a data structure involviing a term
and the term correspondds to an arqrunant of tha function
THEN the abstract expression can be obtained from the data structure
by replacing the term with the argument

So, in this case she is trying to map the concrete expression (A B) where the argument ONE

corresponds to the torm (A B). Therefore, after substituting the argument for the term, the abstract

S 10?7,: :

expression becomes ONE. This same rule applies to map the second concrete expression ((C D)). In

this cace the argument TWO corresponds to the term (C D) and the abstract expression after
substitution is (TWO). Note this rule has correctly mapped the first expression but incorrectly mapped

the second expression. The function definition at this point is

(det addtwo
{lambda (one two)
{cons one (two))))

Figure 12 iilustrates some of the subsequent evolution of this definition. The coding of ADDTWO
had the brother goal of checking that code. Both SS and GRAPES called the LISP interpreter to try
the corde with the arguments (A B) and (C D). Both received the same error message "TWO
undefined function object.” This corresponds to an error that SS had encountered a few times
previousiy in her problem solving. In previous occasions..the cause had been failure to quote an
argumgnt. Therefore, we assumed that she had compiled an operator that used quote to stop

evaluation. When this operator applied her LISP code became

{def addtwo
{lambda (one two)
(cons one '(two))))

Again, the code was tried. This time it returned the result ((A B) TWOQO). Comparing this with her
desired result the problem was localized to the second argument given to CONS and GRAPES went

back to retrying the goai of mapping ((C D)).

“escqccssamconssvectvsen

Insert Figure 13 about here

........................

MAP
(A B)

lMAP FIND

CHECK
ONE

v

v

CODE Y,
ADD TWO
CODE & CHECK
- T
CODE v, CHECK Y,
ADDTWO CODE
lcoos-cowcaere EXAMPLE LTRY WRITTEN FUNCTION
vV ' TWO
MAP TO COMPARE |UNDEFINED
ABSTRACT| Y RESULTS |FUNCTION
DEFAULTl FUNCTION GIVES ERROR
MAP FIX CHECK
cons Y| BuG |Y CODE |V
w fuors STOPS l TRY WRITTEN FUNCTION
EVALUATION
MAP COMPARE
v @ conlv (TWO (A B)(CON |V
MAP FIND ((AB) TWO)
FUNCTION GIVES
WRONG RESULT
CHECK FIX CHECK
TWO BUG CODE |V
v LOCALIZE lTRY WRITTEN
tPROBLEM FUNCTION
REDO COMPARE
av ((AB)(CD)) | v
' (AB)(CD))
FIGURE 12

oML s P
M 1IN MIIHD IIN (@ 2)
anNid ﬁ é
dVW| Al IN3IWNOYVY] [INIWNOYY
AN Al D) aNOJ3s 1sy14
7 duwW dYI aN13 E
\ SININNOYHY
1nv43a 20 US aNId
| SNOD (@ on | Af SNOD
dVIN JYVIWOD 3sn
JLVINNIS NOILONNd
1nvi3a svinan asoows /'
1ovy1sav 3000 | ,[31dWvx3 ERETLTE
Ol dVW MO3HD 3009 dNINVIN

ITdNVYX3-31L3HINOD-300D

(@ 2))
4 BT

!

FIGURE 13

29

Figure 13 illustrates ihe simulation of this mapping. Having returned to this goal, the previous
MAP-FIMD cperator will not appiv again. Therefore, a defauit rule applies which creates a new
subgoal of coding a list consisting of a single argument. As in the case of coding the full ADDTWO
problem, GRAPES falls back on the plan of making up a concrete exampie, coding it, checking the
code, and then mapping the code into an abstract cosie for the functiori\. The previous concrete
example of ((C D)) is Lsed. Again, CONS is chiosen because it makes lists and again its definition is
used to determine the correct arguments. This time the definition is correctly used and GRAPES

plans the concrete code as (CONS '(C D) NIL).

After mentally simu!aging this, GRAPES turns 1o the goal of mapping the concrete code to LISP.
The procesé of performing this mapping is quite analogous to the original mapping in Figure 11.
Again, CONS is mapped into CONS. Ths same MAP-FIND cperator as before maps (C D) into TWO.
An operator for special LISP symbols, like NIL, maps NIL onto i_tself. So, the final successful code

becomes:

(def addtwo
(lambda (one two)
(cons one (cons two nil})))

One interesting feature of this examgle is that 8S is able to find her way_eventuélly to the correct
function without ever cbrrecting the MAP-FIND operator, which will erronecusiy apply whenever it is
given a non-atomic data structure. l.ater protocois by SS indicated she still had the erroneous
MAP-FIND operator. Also, study of novice functions developed for class assignments, suggests that
this is a frequent bug. An interesting question concerns the source of this erroneous operator. It is
hard to imagine that it was compiled from instruction or example. Presumably it was compiled from
an analysis by subjects that data structures should map in a symbol-by-symbol manner, substituting
terms in the new domain (in this case, function arguments) for terms in the old domain. It symbols like
parentheses are simply treated as default mappings, then one.would create an erroneous rule like
MAP-FIND. The rule usually works successfully because usually it is given atomic arguments to map.

This must make it all the more difficult to eliminate the rule once it gets into the programming

.

Ao o,

Ju——

Py

2 : 30

repertoire.

4.3. Return to ONETWO ’
Figure 14 illustrates the behavior of the simulation and the subject when they returned to the

original ONETWO problem. The code they generated is givén below:

(def onetwo
(lambda (list) _
(cons (first list) (second list}))) .

Whereas the subject had taken an hour to code ADDTWO, she only took ten minutes to solve
ONETWO and most of that time was spent confirming what the functions FIRST and SECOND did.
ONETWO is solved by the same method that ADDTWO is solved, but withogt any rehzarsal of the
ONETWO method. Our assumptior.\ is that operators were compiled frém this prchiem that

summarized the planning steps that went into the problem solution.

.........................

.........................

One of the operators that GRAPES compiled summarizes the problem solution illustrated in Figure
13 that started with the goal of creating a list of a single element and resulted in -the action of
CONSing that element with NIL. The compilation procedure recognizes that the various aspects of
the concrete example and'its code are intermediate results and are not essential {o the final answer.

It traces through thes,é steps' to determine if there are any connections from tha teg goal to the final

CONSing action. The summary operator built is:

IF the goal is to code a list consisting of one argument T4
THEN CONS that argument with NiL .
and set as a subgoal to code that argument

Similarly, an operator is compiled to correspond to the outer CONS in the ADDTWO function. It has
the form " 1

IF the goal is to code into a list consisting of argument! and argument2
THEN CONS argument1 into a list consisting of argument2
and set as subgoals to code argument?
and to code a list consisting of argument2

¥

WRITE J
ONE TWO

SOLVE SIMPLER PROBLEM

o

| WRITE WRITE
ADDTWO |V ONETWO |V
CODE & CHECK
CODE CHECK
ONETWO |V CODE |V
USECONS TO ADD TRY WRITTEN
1ST ELEMENT (ONETWO ‘(A BC))
FUNCTION
CHECK CHECK COMPARE
FIRST |V REST |V (A B) v
USE FIRST Useconsto |(A B)
MAKE A LIST
CHECK CHECK CHECK o
LIS [V ELEMENT |V NIL |V :
i’usa SECOND B
CHECK *
Lis |V
-9
.
FIGURE 14 4

T T U SRR e R R SR S e R R e

3

The compilation operator chooses to work on sections of the goal tree that have the following
properties
1. The segment begins with a coding goal such as "code a list of two arguments”.

2. The intermediate steps are planning operations whose actions are not essential to the
final product.

3. The terminating goals are also concerned with coding.
Compilation produces operators that directly connect 1 to 3 eliminating the intermediate passage

through 2.

4.4. Further Discussion of Compilation

As discussed in Anderson (1982) there are two components to compilation-- composition and
procsduralization. Composition produces a collapsing of steps and proceduralization eliminates
retriaval of information from .long-term memory by building that information into the rule. Both
compcnents are involved in the compilation of the operators in the ONETWO example, but there are

other circumstances where the two might operate singly.

As an examiple of pure composition, suppose one wanted to add the first member of Listt to List2.
Then the following two operators would apply in sequence:

IF the goal is to add an element to List2
THEN CONS the element to List2
and set as subgoals {0 ebeelethe element
andto cheek List2 ~ <€ode
Code

IF the goal is code the first element of List1
THEN use CAR of List1
and set as subgoal to code List1

These two rules could be composed together to produce

IF the goaf is to add an element to List2
and the element is the first element of List1
THEN CONS the CAR of Listt with List2
and set as subgoalts to code List1
and to code List2

Such composition woulq collapse repeated sequences of coding operations to create macro-

opecrators. The result would be a speed-up in coding.

Proceduralization can be illustrated in its pure form by the following example: in GRAPES thereis a
production that will retrieve function definitions from long-term memory and apply them:

iF the goal is to code a relation on an argument list
and there is a LISP function that codes this relation
THEN uce this function with the argument list
and set as subgoals to check the cading of the argument list

The second line of the condition might match, for instance, "CAR codes the first element of a list." if
this rule is proceduralized to eliminate the retrieval of the CAR definition, it becomes

IF the goal is to code the first element of a list
THEN use CAR of the list .
and set as a subgoal to ccde the list

Now a production has been created which can directly recognize the application of CAR. This will
resuit in a reducticn in the amount of long-lerm memory nformation that needs to be maintained in

working memory.

It needs to be emphasized that ncither proceduralization nor compasition efiminate the original
production rules from which they wer= built. Rather the new compiled rules just serve as additional

supplemental rules to produce better periormance in certain circumstances.

5. Significant Conclusions

5.1. Types of Rule Formulation
While the following list is probably nbt exhaustive, we have identified some of the principal types of

rules used for programming:

5.1.1. Function Recognition The simplest kind of rule form is one that recognizes an existing LISP
function will achieve the current goal. So, for instance, corresponding to the function CONS, there is
a production:

IF the goal is to add an element to a list
THEN use CONS

33

and set as subgoals to check the list
and to check the element

These rules result in setting subgoals to check every argument to the function. There are a number of
ways that the goal of checking an argument can be achigved. Two of the simplest which result in
direct success, are given by the following rules:

IF the goal is to check an element
and it corresponds to a variable of the function
THEN use the variable

IF the goal is to check an element
and it has already been coded
THEN use the existing code.

However, if nothing else will work the following default rule will apply.6

IF the goal is to check an element
and the element is defined as having the relation to an argument list
THEN set as a subgoal to code the relation to the argument list
This basically provides a recursion point in GRAPES control structure becauze we nave set a goal of
coding a relation which leads to subgoals of checking} of the arguments to a function that achieves
the relation, which lead to new subgoals of finding a function, etc. The sirplest and most direct
function coding occurs when the problem has been so specified that a set of fuactions can be

hierarchically programmed such that éorrespond directly to the unpacking of the problem definition.

For instance, suppose the following problem were specified, given arguments List1 and List2.

The result is formed by adding X to the front of .

X iz the first element of List1.
Y is the tail of list List2.

Then the CONS rule would recognize its applicability to obtaining the resuit and set as subgoals to
check X and Y, CAR would be recognized as the code for X and the ¢ 1bgoal would be to check List1.
CDR would be recognized as the code for Y and the subgoal would be to check List2. The elements
List1 and List2 correspond to ihe argument variables of the function and the problem would
terminate. The resulting code would be (cons (car List1) (cdr List2)). When functions can be coded

in this manner, the hierarchical flow of control in GRAPES perfectly reflects the hierarchical structure

of LISP.

:! 5.1.2. Probiem Refinement One of tive reasons wiiy' programming is not always as simple as
outlined above is that the relations in problem specification may not correspond to known LISP
functions. For instance, in the solution of REACHABLE GRAPES comes upon the need to code ali the

P nodes connected to a node. It does not know any LISP code corresponding to the relation connacted

to. Hnwever, it does have the following definition

The nodes connected to a node appear as the second element of a sublist of graph
whose first element is the node.

The foligwing rule can apply

.

IF the goal is to code a relationship
and there is a definition of that relationship
THEM set as subgoals 10 refine the relationship with the definition
and then to code the refined relationship

in rasponse {0 the goal to use the definition to reiine, the following refined specification of the

LA SN Sl S S) ol a4 S vl
| MR,

{o-ke-¢oded object is placed in memory.

It is the second element of a sublist of GRAPH whose first element is the node.

-

At this point, CADR can recognize its applicability for retrieving the second element and a goal is set
io code the sublist of graph whose first element is the node. It is at this point where ASSOC can

recognize its applicability.

It neads to be stressed that subjects and GRAPES can fail to recognize the applicability of a
function simply because its specification does not match that of the function. Thus, a typical novice
"bug"” in programming is to write (APPEND (LIST X) Y) rather than (CONS X Y). This is presumably

because the subject specifies his goal as adding a list consisting of X to the list Y rather than inserting

X as the first element of Y. As another example, if subjects want the sublist of L beginning with

element X, they will use (MEMBER X L) but when they want the element after X in L, they might not —. 1

use (CDR (MEMBER X L)). This is because they do not represent their problem as "the tail of the list

beginning with X in L" but rather as "the list after X in L". Thus, the basic point is that programming

bghavior is not invariant under paraphrase of fhe problem statement. . . 1
L J

.=

5.1.3. Use of Examples and Analogies Generating concrete examples is another method of
solving the roadblock of a relation that does to match a known function. We saw this in the ADDTWO
protocols. The subject did not know any function directly relevant to putting two elements into a list
but generated an example on paper of what the tuncticn would do. In parsing this example that she
had drawn on the sheet of paper, she noted the result was a list whose first element was the first

argument. This matched her definition of CONS.

Anather method of solving the roadblock is to solve the problem by hand and try to map the steps
of the hand solution to LISP. So, for instance, our subject was asked to write a function that wou!ld
retrieve the third elemept of a list, when sie only knew CONS, CDR, and CAR. She noted that she
was able to ‘soh/e this by skipping two places in the list and reading thé next element. She was then

able to translate skipping into taking the CDR and reading the next element into CAR.

The protocol of WC during REACHABLE is another axample where a hand sclution was used to
help guide the structuring of a LISP function. However, sometimes hand solutions do not map
naturally into LISP. A good exampie cf this is FOWERSET. Cne of the reasons why POWERSET is so

ditficuit is that subjects’ hand solutions do not coirespond to the easy LISP solution.

5.1.4. Programming Techniques All the previous methods rely on essen'tially function definitions,
problem definitions, and prior knowledge and skills. However, part of the power in programming
comes from acquiring certain probiem-solving methods that are specific to prcgramming.
POWERSET illustrated the use of tail-rgcursion or CDR-recursion. This translated the goal of coding
the POWERSET relation into the goals of coding the relation between (POWERSET L) and
(POWERSET (CDR L)) and of coding the terminating condition. These proved to be much more
tractable problems. There are numerous other types of recursion techniques. For instance, there is
recursion in the integer N where the problem is decomposed into the goals of coding the relation
between (Function N) and (Function N-1)‘ and of coding (Function 0). There are also numerous

iteration types which invoive their own techniques. There are also various techniques for breaking a

AR

T
%

36

problem into subcases and coding each of these separately.

Presumably, it is in the possession of these techniques that the expert programmer is most
advanced over the novice. This is an idea that has been suggested by a number of researchers
(Kahney & Eisenstadt, 1982; Soloway, 1930; Rich & Shrobe, 1978). Many of these techiniques are
explicitly learned either through formal courses or informal interaction with other programmers.
However, we suspect that many more are also compiled from experience. That is, the programmer
hits upon a problem, solves it with much search and effort, and compiles a ruie that captures the
essence of the solution. There were a couple of modest examples of this in the protecols involving

ADDTWO.

5.2. Planning and Top-down Control
The major activity cf both our subjects and GRAPES is better characterized as planning rather than
coding. Each of the operators involves an attempt to carry out or edt a plan. Some of these operators

had code associated with them but that code was just a LISP template attachesi to the goal structure.

Coding occurs during the program planning and serves to help the subject remember the goal
structure of the plan. Thus, this analysis disagrees with the serial analysis of Brooks (1975) who
proposed that coding only took place after the pian was complete. The many pages of abortive code

written by our subjects is ample evidence that this is not always so.

It is also noteworthy that both our subjects and GRAPES generated this program in a top-down,
depth-first, left-to-right manner. The top-down characteristic corresponds to ecicts of structured
programming; the depth-first characteristic does not. For instance, our subjects and GRAPES wrote
the helping function ADDTO for the POWERSET problem before completing the POWERSET
function. We think depth-first control is more. natural than breadth-first and this is one reason why itis

seen in novices.

The basic flow of control in ACT# is depth-first and breadth-first control can only be implemented

;v.

a7

by embedding it within the depth-first cantrol. For instance, one might imagine implementing a
breadth-first quaue in a depth-first iterative control which decomposad doing the queue into deing
the first element and then doing the rest. For instance,

IF the general strategy is to implement breadth-first expansion
and the current goal is to execute a queue of goals
THEN set as a subgoal to do the first goal in the queue
and set as a second subgoal to do the rest

IF the general strategy is to implement breadth-first expansion
and a goal has just led to a set of subgoals
and thers is a queue of subgoals
THEN append the new goals at the end of the queue
and set as a subgoal to execute the queue

There are a numoer of reasons why only more expert programmers woul'd show breadth-first
contral. First, if it has to be implemented in a system that is basically depth-first, then it is more
resource-den:anging to pursue a breadth-first expansion rather than a depth-first expansion. The
novice will have all of his resources taken up in the basics of programming and will not have capacity
left over 1o maintain the breadth-first queue. Second, successful breadth-first}expansion requires a
sense chout what is a reasonable and achievable subgoal. The novice uses depth-first expansion as
one means of assessing whether he has just generated a reasonable subgoal. Third, breadth-first
expansion becomes more valuable when faced with larger problems. Our subjects never faced a

problern that involved more than two helping functions.

An interesting question concerns whether the top-down programming we observed was a result of
the hicrarchical structure of LISP or whether it would have been observed with other more linear
programming languages. Brooks (1975), looking at the coding of FORTRAN, found evidence for 4
much more linear flow of control although each line of code seemed to be coded in a somewhat
top-down manner. Just as it is possible to implement a breadth-first discipline in a depth-first
architecture, so is it possible to implement a linear discipline in a top-down architecture or vice-versa.

At the current point in time, we cannot say whether the basic cognitive control structures difter in

- -

AR A JEE oes eun ety

different languages.

Finally, it shouid be noted that one effect of high levels of knowledge compilation is to make the
programming of simple problems appear mare linear and less top-down. That is, to the extent that the
subject has rules which can recognize large portions of the problem as having known solution, his
behavior will be dominated by the linear execution of known code templates rather than hierarchical

problem-solving.

5.3. The Role of Analogy

Analogy plays an important role for novices wha do not yet have a sufficient set of operatc.c 10
directly solve the problem. Although not discussed here, a frequent category of analogy involves
trying to mép one LISP function into another. We discussed two other examples of analogy in this
paper. One involves sclving a proklem in a non-programming domain and then mapping the structure
of ihe solution into l:ISP code. This was illusirated in our lirst simulation of the REACHABLE protocol.
The other example of analogy was iliustrated in the ONETWO simulation. Here the subject tried to
solve a problem of finding some code tn type in at the top level that had the effect of the function.

Then she tried to map this intc a LISP function.

It is typically the case that the structure of the old problem in analogy will not be identical to the
structure of the new problem to be solved. Therefore, the task of mapping from one to another will
not be trivial but rather is a problem-solving task that must be informed by the nature of LISP. While
there are exceptions, most of the mapping problams are solved on a trial and error fashion. The effort
of our subject trying to map ((C D)) in the ONETWO problem is typical. We believe that students learn

how to map analogies to LISP just as they learn other programming skills.

We believe that more expert LISP programmers do not use analogy as frequently because they
have compiled out the need for analogy in many situations. Having not looked carelfully at expert
programmers, this is somewhat a speculation, but it certainly corresponds with our own self

observation as LISP programmers. It also is in accord with the GRAPES control structure, which

L]
L

. A ana aah ana AeremoaAA Al

ek

39

outside

prefers to solve a problem within LISP rather than «stwsm. As more and more LISP operators are

acquired, there will be less need to work outside of LISP.

5.4. Learning by Doing

Text or teacher instruction in LISP does provide the student with vaiuable facts, but it is only in the
course of performing the skill that the student acquires operators that will lead to facile performance
of the skill. We have reviewed a number of examples of how the know!edge ccmpilaiion grocesses of
composition and proceduralizaticn can create new operators. The ACT theory would prediict that
these operators would become further tuned through generalization and discriminaticn. However,

apparently the first 30 hours of LISP acquisition is too brief to see these tuning precesses at work.

5.5. Working Memory

One of the surprise discoveries in our research is how much of the problem-salving protocols are
given to recovering from errors of working memory. We estimate that about 53% <f the pratoccls are
given to recovering from such memory errors. There are ‘wo typ.es of erro1s observable in the
protocols. There are errors that involve forgetting or misremembering subgozals or partial products.
Second, there are errors which involve retrieving the wrong item from long-term memary. Typically,
this second class of errors involves misremembering function definitions. The most frequent of these
is using LIST when CONS is correct. In this paper we gave ah analysis of how working me-mory failure
might underlie this memory failure. The proposal was that subjects lost some of the specification of

their goal and retrieved a "simpler” function which matched the partial goal specification.

Again, we have not collected systematic data on the matter but we believe that such errors of
working memory are-less frequent in experts. Certainly, our classroom studies have shown the
LIST/CONS confusion decreases with increasing expertise. Part of this improved working memory
may result from better problem organization and chunking. However, we also believe that subjects
simply have greater working memories for domains and concepts for which they have greater

familiarity. Anderson (1983) reviews evidence that more familiar nodes in a semantic network spread

10

greater activation. Chase & Ericsson (1981) showed that with a great deal of practice, subjects can
increase their capacity for a list of numbers. They arque that the long-tcrm memories of theso

subjects become reliable extensions of their short-term memaries.

| -
s

41

References

Andercen, J.R. Acquisition of cognitive ckill. Pgychoelogical Revicw, 1682, 89, 869-406.

Anderson, J.R. The Architecture of Cognition, Harvard University Press, 1983.

Barstow, D.R. An experiment on knowiedge-based automatic programming, Artificial Intelligence, 1979, 12,

73-119.

Brooks, R.E. A model of human cognitive behavicr in writing code for computer programs. Unpublished

doctoral dissertation, Carnegie-mellon University, 1875.

Chase, W. G. and Ericsson, K. A. Skilled memory. In J.R. Anderson (Ed) Cognitive Skills and Their

Acquisition. Hilisdale, NJ: Erlbaum, 1981.
Kant, E.and Newell, A. Problem solving techniguas for the design of algorithms. To appear in the
Proceedings of the Symposium on the empitical fcundations of information and software science.

Atlanta, GA, November, 1982.

Kahney, H. & Eisenstadt, M. Programmers’ mental models of their programming tasks: The interaction of
real-word knowledge aﬁd programming knowledge. Proceedings of the Fourth Annyal Conference of

‘the Cognitive Science Society, 1982.

Miller, G.A., Galanter, E., & Pribram, K.H. Plans and the Structure of Behavior, New York: Holt, 1960.
Norman, D.A. Categorization of action slips. Psychological Review, 1981, 88, 1-15.

Rich, C. & Shrobe, H. Initial report on a LISP programmers’ apprentice. lEEE Trans. Soft. Eng., SE-4:6,

1978, 456€-466.

Sacerdoti, E.D. A structure for pians and behavigr, New York: Elsevier North-Holland, 1977.

. -3 F

42

Sauers, R. & Farrell, R. GRAPES User's Manual. Technical Report ONR-82-3.

Sikiossy, L. Let's Talk LISP, Englewood Clitfs, NJ, 1976.

Soloway, E.M. From problems to programs via plans: The context and structure of knowledge for
introductory LISP prcgramming. Coins Technical Report 80-19, University of Massachusetis at

Ambherst, 1980.

Winston, P.H. Artificial Intelligence. Reading, MA: Addison-Wesley Publishing Company, 1977.

Winston, P.H. & Horn, B.K.P. LISP, Reading, MA: Addison-Wesley, 1981.

Figura 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

43

Figure Captions

A spectiication of the RUEACHAELE grailam Gs prescnted to subjects.

(a) A illustration of the flow of control in the hand solution of subject WC fcr the
REACHABLE problem.
(b) The subject’s initial sketch of how this hand solutinn would result in changes

to the list structure representation of the answer.

Hierarchical structure of subject 2's solution to the REACHABLE problem after
rule R4 and before the transformation. Checks indicate successful goals and

question marks indicate goals yet to be tried.

Hierarchical structure of subject 2's solution to the REACHABLE problem after
rules R5-R9 have produced transformation in the goal tree of Figure 3. Checks

indicate successful goals and question marks indicate g'oals yet to be tried.
A specification of the POWERSET problem as presented to subjects.

A representation of the essential insight which underlies’ solution of the

POWERSET problem.

A representation of the hierarchical goal structure controlling GRAPES' solution

of the POWERSET probiem.

A representation of the hierarchical goal structure controlling GRAPES' solution
of the ADDTO problem. This structure is a substructure of the goal structure in

Figure 7.

The goal structure at the beginning of the ADDTWO protocol where the subject

makes up an example.

.

maesa haiae

Yy
-t oo

Ty T

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

43

The goal structure at the point where the subject decides what top-level function

call is analcgous to her desired program.
The goal structure governing the initial coding of ADDTWO.
The goal structure governing the testing and repair of the ADDTWO function.

The goal structure governing the episode in ADDTWO where the subject decides

how to put an element into a list.

The goal structure governing the coding ¢f ONETWO after the successful coding

of ADDTWO.

-

This research is supported by contract M0C014-81-C-0335 from the Cilice of Maval Research. We

would like to thani Robin Jeffries beth for many hours of valuable discussiony ralzvant to the

comments
research and for her e on the paper.

-

3 46

"Here and throughout the paper we will give English-tike rendition of the production rules. A
technical speciticaticn of these rules (i.e., a compuiar listing) ean ba obtained by writing to us. Also

; available is a users’ manual (Sauers & Farreil, 1982) that describes the system.

2Actuauy, we had a set of productions which generated the hierarchical plan in Figure 2a.

Spofore these producti’ons apply, a production must apply to refine the definition of connectedness

in terms of the GRAPH formalism of the problem. This is discussed in Section 5.1.2.

‘Unfortunately, this asymmetry is confounded with the fact that /LIST\ is more mnehonic as a
function name than CONS. We are currently doing an experiment with artificial function names that
elimngte
attermots to samime the confound.

/e are grateful to discussions with Robin Jeffries for helping our understanding of this problem.

Current work with Jefiries is being done on the nature of novice understanding of list structures.

SFrecuently in the preceeding discussions we have skipped over rules like this which provide the

W
“interstitial" connections between the rules thatA were principly interested in.

MU/Anderson September 14, 1982

Navy Navy
1 Dr. Robert Breaux 1 CAPT Richard L. Martin, USN
Code N=T11 Prospective Commanding Officer
NAVTRAEQUIPCEN USS Carl Vinson (CVN-T0)
Orlando, FL 32813 Newport News Shipbuilding and Drydock Co
Newport News, VA 23607
1 CDR Mike Curran
Office of Naval Research 1 Dr William Montague
800 N, Quincy St. ‘ Navy Personnel R&D Center
Code 270 San Diego, CA 92152
Arlington, VA 22217
1 Ted M. I. Yellen
1 DR. PAT FEDERICO Technical Information Office, Code 201
NAVY PERSONNEL R&D CENTER NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152 SAN DIEGO, CA 92152
) Dr. John Ford 1 Library, Code P201L
Navy Personnel R&D Center Navy Personnel RiD Center
San Diego, CA 92152 San Diego, CA 92152
1 LT Steven D. Harris, MSC, USN 1 Technical Director
Code 6021 Navy Personnel R&D Center
Naval Air Development Center San Diego, CA 92152
Warminster, Pennsylvania 18974
6 Commanding Officer
1 Dr. Jim Hollan ‘Naval Research Laboratory -
Code 304 . Code 2627
Navy Personnel R & D Center Washington, DC 20390
San Diego, CA 92152
1 Psychologist
1 CDR Charles W. Hutchins ONR Branch Office
Naval Air Systems Command Hq Bldg 114, Section D
AIR-3U0OF 666 Summer Street
Navy Department Boston, MA 02210

Washington, DC 20361
1 Of fice of Naval Research

1 Dr. Norman J. Kerr : Code 437
Chief of Naval Technical Trainin 800 N. Quincy SStreet
Naval Air Station Memphis (75) Arlington, VA 22217

Millington, TN 38054
S Personnel & Training Research Programs

1 Dr. William L., Maloy (Code 458)
Principal Civilian Advisor for Office of Naval Research
Education and Training Arlington, VA 22217
Naval Training Command, Code 00A
Pensacola, FL 32508 1 Psychologist

ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

MU/ Anderson September 14, 1982

Navy

Special Asst. for Education and
Training (OP-01E)

Rm. 2705 Arlington Annex

Washingt~~, DC 20370

Office of the Chief of Naval Operations

Research Development & Studies Branch
(OP-115)

Washington, DC 20350

LT Frank C. Petho, MSC, USN (Ph.D)
Selection and Training Research Division
Human Performance Sciences Dept.

Naval Aerospace Medical Research Laborat
Pensacola, FL 32508

Dr. Gary Poock

Operations Research Department
Code 55PK

Naval Postgraduate School
Monterey, CA 93940

Dr. Worth Scanland, Director

Research, Development, Test & Evaluation
N-5

Naval Education and Training Command
NAS, Pensacola, FL 32508

Dr. Alfred F. Smode

Training Analysis & Evaluation Group
(TAEG)

Dept. of the Navy

Orlando, FL 32813

Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

Roger Weissinger-Baylon

Department of Administrative Sciences
Naval Postgraduate School

Monterey, CA 92940

Dr. Robert Wisher

Code 309

Navy Personnel R&D Center
San Diego, CA 92152

Navy

Mre John H. Wolfe

Code P310

U. S. Navy Personnel Research and
Development Center

San Diego, CA 92152

R LGV W)

MU/Anderson

lond

Septedbérilu; 1982

Army

Technical Director

U. S. Army Research Institute for the
Behavioral and Social Sciences

5001 Eisenhower Avenue

Alexandria, VA 22333

Mr. James Baker

Systems Manning Technical Area
Army Research Institute

5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Beatrice J. Farr

U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

DR. FRANK J. HARRIS

U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

Dr. Michael Kaplan

U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

Dr. Milton S. Katz

Training Technical Area

U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Harold F. O'Neil, Jr.
Attn: PERI-OK

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Robert Sasmor

U. S. Army Research Institute for the
Behavioral and Social Sciences

5001 Eisenhower Avenue

Alexandria, VA 22333

Dr. Joseph Ward

U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Air Force

Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

Dr. Alfred R. Fregly
AFOSR/NL, Bldg. 410]
Bolling AFB
Washington, DC 20332

Dr. Genevieve Haddad
Program Manager

Life Sciences Directorate

AFOSR
Bolling AFB, DC 20332

3700 TCHTW/TTGH Stop 32

Sheppard AFB, TX 76311

Page 3

.....

cMU/Anderson September 14, 1982 Page 4

3

LA

: Marines) . CoastGuard

N 1 H. William Greenup 1 Chief, Psychological Reserch Branch

b Education Advisor (E031) U. S. Coast Guard (G-P-1/2/TPu2)
Education Center, MCDEC Washington, DC 20593

Quantico, VA 22134

1 Special Assistant for Marine
Corps Matters
Code 100M
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217

1 DR. A.L. SLAFKOSKY
SCIENTIFIC ADVISOR (CODE RD-1)
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380

b IMU/Anderson September 14, 1982 Page 5
¢
{ Other DoD civil Govt
12 Defense Technical Information Center] Dr. Paul G, Chapin
H Cameron Station, Bldg 5 Linguistics Program
X Alexandria, VA 22314 National Science Foundation
Attn: TC Washington, DC 20550
1 Military Assistant for Training and ? Dr. Susan Chipman
Personnel Technology Learning and Development
Office of the Under Secretary of Defense National Institute of Education
for Research & Engineering 1200 19th Street MW
Room 3D129, The Pentagon Washington, DC 20208
Washington, DC 20301
1 Dr. John Mays
1 DARPA National Institute of Education
1400 Wilson Blvd. 1200 19th Street NW
Arlington, VA 22209 Washington, DC 20208

1 William J. McLaurin
66610 Howie Court
Camp Springs, MD 20031

1 Dr, Arthur Melmed
National Intitute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Andrew R. Molnar
Science Education Dev.
and Research
National Science Foundation
Washington, DC 20550

1 Dr. Joseph Psotka
National Institute of Education
1200 19th St. NW
Washington,DC 20208

1 Dr. Frank Withrow
U. S. Office of Education
400 Maryland Ave. SW
Washington, DC 20202

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

cMU/Anderson

September 34, 1982
Non Govt

Anderson, Thcmas H., Ph.D.
Center for the Study of Reading
174 Children's Research Center
51 Gerty Drive

Champiagn, IL 61820

Dr. John Annett
Department of Psychology
University of Warwick
Coventry CV4 TAL
ENGLAND

1 psychological research unit
Dept. of Defense (Army Office)
Campbell Park Offices

Canberra ACT 2600, Australia

Dr. Alan Baddeley

Medical Research Council
Applied Psychology Unit

15 Chaucer Road

Cambridge CB2 2EF

ENGLAND

Dr., Patricia Baggett
Department of Psychology
University of Colorado
Boulder, CO 80309

Dr, Jonathan Baron

Dept. of Psychology
University of Pennsylvania
3813-15 Walnut St. T=3
Philadlphia, PA 19104

Mr Avron Barr

Department of Computer Science
Stanford University

Stanford,; CA 94305

Liaison Scientists

Office of Naval Research,
Branch Cffice , London

Box 39 FPO New York 09510

Dr. Lyle Bourne
Department of Psychology
University of Colorado
Boulder, CO 30309

Page 6

Non Govt

DR. JOHN F., BROCK

Honeywell Systems & Research Center
(MN 17-2318)

2600 Ridgeway Parkway

Minneapolis, MN 55413

Dr. John S. Brown

XEROX Palo Alto Research Center
3333 Coyote Road

Palo Alto, CA 9u304

Dr. Bruce Buchanan

Department of Computer Science
Stanford University

Stanford, CA 94305

DR. C. VICTOR BUNDERSON
WICAT INC.

UNIVERSITY PLAZA, SUITE 10
1160 SO. STATE ST.

OREM, UT 84057

Dr. Pat Carpenter
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. John B. Carroll
Psychometric Lab

Univ. of No,., Carolina
Davie Hall 013A

Chapel Hill, NC 27514

Dr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

Dr. Micheline Chi
Learning R & D Center
University of Pittsburgh
3939 QO'Hara Street
Pittsburgh, PA 15213

Dr, William Clancey

Department of Computer Science
Stanford University

Stanford, CA 94305

e
AR S

MU/Anderson

- September 14, 1982-

Non Govt

Dr. Allan M. Collins

Bolt Beranek % Newman, Inc.
50 Moulton Street
Cambridge, Ma 02138

Dr. Lynn A. Cooper

LRDC

University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. Meredith P. Crawford

American Psychological Association
1200 17th Street, N.W.

Washington, DC 20036

Dr. Kenneth B. Cross
Anacapa Sciences, Inc.
P.0. Drawer Q

Santa Barbara, CA 93102

LCOL J. C. Eggenberger

DIRECTORATE OF PERSONNEL APPLIED RESEARC

NATIONAL DEFENCE HQ
101 COLONEL BY DRIVE
OTTAWA, CANADA K1A 0K2

Dr. Ed Feigenbaum

Department of Computer Science
Stanford University

Stanford, CA 94305

Mr. Wallace Feurzeig

Bolt Beranek & Newman, Inc.
50 Moulton St.

Cambridge, MA 02138

Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

Univ. Prof. Dr. Gerhard Fischer
Liebiggasse 5/3

A 1010 Vienna

AUSTRIA

Page'7

Non Govt

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. Alinda Friedman
Department of Psychology
University of Alberta
Edmonton, Alberta

CANADA T6G 2E9

Dr. R. Edward Geiselman

Department of Psychology
University of California
Los Angeles, CA 90024

DR. ROBERT GLASER
LRDC ,
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

Dr. Marvin D. Glock
217 Stone Hall

-Cornell University

Ithaca, NY 14853

Dr. Daniel Gopher
Industrial & Management Engineering

Technion-Israel Institute of Technology

Haifa
ISRAEL.

DR. JAMES G. GREENO

LRDC

UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET:
PITTSBURGH, PA 15213

Dr. Harold Hawkins
Department of Psychology
University of Oregon
Eugene OR 97403

Dr, Barbara Hayes-Roth
The Rand Corporation
1700 Main Street

Santa Monica, CA 9QOUQK

r

MU/Anderson September 14, 1982

Non Govt

Dr. Frederick Hayes-Roth
The Rand Corporation
1700 Main Street

Santa Monica, CA 90406

Dr. Dustin H, Heuston
Wicat, Inc.

Box 986

Orem, UT 84057

Dr. James R. Hoffman
Department of Psychology
University of Delaware
Newark, DE 19711

Dr. Kristina Hooper
Clark Kerr Hall
University of California
Santa Cruz, CA 95060

Glenda Greenwald, Ed.

"Human Intelligence Newsletter"
P. 0. Box 1163

Birmingham, MI 48012

Dr. Earl Hunt

Dept. of Psychology
University of Washington
Seattle, WA 98105

Dr. Ed Hutchins
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Greg Kearsley

HumRRO

300 N. Washington Street
Alexandria, VA 22314

Dr. Steven W. Keele
Dept. of Psychology
University of Oregon
Eugene, OR 97403

Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder, CO 80302

Page 8

Non Govt

Dr. David Kieras
Department of Psychology
University of Arizona
Tuscon, AZ 85721

Dr. Stephen Kosslyn
Harvard University
Department of Psychology
33 Kirkland Street
Cambridge, MA 02138

Dr. Marcy Lansman

Department of Psychology, NI 25
University of Washington
Seattle, WA 98195

Dr. Jill Larkin :
Department of Psycholog
Carnegie Mellon University
Pittsburgh, PA 15213

Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Michael Levine

Department of Educational Psychology
210 Education Bldg.

University of Illinois

Champaign, IL 61801

Dr. Mark Miller .

TI Computer Science Lab

C/0 2824 Winterplace Circle
Plano, TX 75075

Dr. Allen Munro

Behavioral Technology Laboratories
1845 Elena Ave., Fourth Floor
Redondo Beach, CA 90277

Dr. Donald A Norman

Dept. of Psychology C-009
Univ. of California, San Diego
La Jolla, CA 92093

IMU/Anderson September 14, 1982

F Non Govt

1 Committee on Human Factors
JH 811
2101 Constitution Ave., NW
Washington, DC 20418

1 Dr. Seymour A, Papert
Massachusetts Institute of Technology
Artificial Intelligence Lab
545 Technology Square
Cambridge, MA 02139

1 Dr, James A. Paulson
Portland State University
P.0. Box 751
Portland, OR 97207

1 Dr. James W. -Pallegrino
University of California,
Santa Barbara
Dept. of Psychology .
Santa Barabara, CA 93106

1 MR. LUIGI PETRULLO
2431 N. EDGEWOOD STREET
ARLINGTON, VA 22207

1 Dr. Richard A. Pollak
Director, Special Projects
Minnesota Educational Computing Consorti
2520 Broadway Drive
St. Paul ,MN 55113

1 Dr. Martha Polson
Department of Psychology
Campus Box 346
University of Colorado
.Boulder, CO 80309

1 DR. PETER POLSON
DEPT. OF PSYCHOLOGY
UNIVERSITY OF COLORADO
BOULDER, CO 80309

1 Dr. Steven E. Poltrock
Department of Psychology
University of Denver
Denver ,CO 80208

" Dr. Ernst Z. Rothkopf R

Non Govt

Dr. Mike Posner
Department of Psychology
University of Oregon
Eugene OR 97403

MINRAT M. L. RAUCH

P II 4

BUNDESMINISTERIUM DER VERTEIDIGUNG
POSTFACH 1328

D-53 BONN 1, GERMANY

Dr. Fred Reif

SESAME

¢/o0 Physics Department
University of California
Berkely, CA 94720

Dr. Lauren Resnick

LRDC

University of Pittsburgh
3939 O'Hara Street
-Pittsburgh, PA 15213

Mary Riley

‘LRDC

University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr, Andrew M. Rose _

American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007

Bell Laboratories "
600 Mountain Avenue
Murray Hill, NJ 07974

Dr. David Rumelhart

Center for Human Information Processing
Univ. of California, San Diego

‘La Jolla, CA 92093

DR, WALTER SCHNEIDER
DEPT. OF PSYCHOLOGY
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61820

pu—

i

-~ e o a &

cMU/Anderson September 14, 1982

Non Govt

1 Dr. Alan Schoenfeld
Department of Mathematics
Hamilton College
Clinton, NY 13323

1 DR. ROBERT J. SEIDEL
INSTRUCTIONAL TECHNOLOGY GROUP
HUMRRO .
300 N. WASHINGTON ST.
ALEXANDRIA, VA 22314

1 Committee on Cognitive Research
% Dr. Lonnie R. Sherrod
Social Science Research Council
605 Third Avenue
New York, NY 10016

1 Dr. David Shucard
Brain Sciences Labs
National Jewish Hospital Research Center
National Asthma Center
Denver, CO 80206

"1 Robert S. Siegler

Associate Professor
Carnegie-Mellon University
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

1 Dr. Edward E. Smith
Bolt Beranek & Newman, Inc,
S0 Moulton Street -
Cambridge, MA 02138

1 Dr. Robert Smith
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

1 Dr. Richard Snow
Sehool of Education
Stanford University
Stanford, CA 94305

1 Dr. Kathryn T. Spoehr
Pscyhology Department
Brown University
Providence, RI 02912

Page 10

Non Govt

Dr. Robert Sternberg
Dept. of Psychology
Yale University

Box 11A, Yale Station
New Haven, CT 06520

DR. ALBERT STEVENS

BOLT BERANEK & NEWMAN, INC.
50 MOULTON STREET
CAMBRIDGE, MA 02138

David E. Stone, Ph.D.
Hazeltine Corporation
7680 01d Springhouse Road
McLean, VA 22102

DR. PATRICK SUPPES

INSTITUTE FOR MATHEMATICAL STUDIES IN

THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

Dr. Kikumi Tatsuoka

Computer Based Education Research
Laboratory

252 Engineering Research Laboratory

University of Illinois

Urbana, IL 61801

Dr., John Thomas

IBM Thomas J. Watson Research Center
P.0. Box 218

Yorktown Heights, NY 10508

DR. PERRY THORNDYKE

THE RAND CORPORATION
‘1700 MAIN STREET

SANTA MONICA, CA 90406

Dr. Douglas Towne

Univ. of So. California
Behavioral Technology Labs
1845 S. Elena Ave.

Redondo Beach, CA 90277

Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

PP W LN

PO

I A ITIE
A adad ‘

)
s

MU/Anderson September 14, 1982 Page 11

Non Govt

1 DR. GERSHON WELTMAN
PERCEPTRONICS INC.
6271 VARIEL AVE.
WOODLAND HILLS, CA 91367

1 Dr. Keith T. Wescourt
Information Sciences Dept.
The Rand Corporation
1700 Main St,
Santa Monica, CA 90406

1 DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66044

1 Dr. Christopher Wickens
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Frank R. Yekovich
School of Education
Catholic University

